INTRODUCTION: During the last few years, detection of epidermal growth-factor-receptor (EGFR)-activating mutations has become a routine part of clinical practice because of their importance in choosing the optimal treatment strategy for non-small-cell lung cancers (NSCLCs). The emergence of third-generation EGFR-tyrosine-kinase inhibitors required the implementation of sensitive methods to detect the subclonal EGFR mutation. Clinical implications make it essential to rapidly search for the T790M mutation, which is a real challenge for laboratories. The aim of this study was to compare performances of next-generation sequencing (NGS), one of the most frequently used molecular biology methods, and Idylla EGFR-Mutation Assay (henceforth Idylla), a fully automated real-time polymerase chain reaction (PCR) that is increasingly used in pathology laboratories, to detect the EGFR mutation using DNA.
METHODS: This retrospective study used 47 DNA samples extracted from NSCLC biopsies that previous NGS identified as: 29 harboring EGFR and T790M resistance mutations, 11 EGFR-activating mutation without T790 M and 7 wild-type EGFR. EGFR limit-of-detection (LOD) experiments used a commercial DNA known to harbor that mutation.
RESULTS: Idylla detected primary EGFR-activating mutations and the T790 M mutation in 97.5 % and 65.5 % of the cases, respectively. The results of this retrospective analysis and LOD experiments showed that the Idylla should only be used to detect EGFR mutations in samples with > 25 ng of DNA and > 10 % tumor cells.
CONCLUSIONS: Idylla was able to rapidly detect EGFR-activating mutations but detecting subclone mutations, like T790M, with < 25 ng of good-quality DNA or < 10 % tumor cells (variant allele frequency below the assay's validated LOD) was not always reliable.